返回首页

动量原理?

148 2024-03-08 10:26 admin

一、动量原理?

动量定理的内容为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为FΔt=mΔv。

公式中的冲量为所有外力的冲量的矢量和。动量定理是一个由实验观测总结的规律,也可由牛顿第二定律和运动学公式推导出来,其物理实质也与牛顿第二定律相同,这也意味着它仅能在经典力学范围内适用。

与动量定理相关的定律——动量守恒定律,大到接近光速的高速,小到分子原子的尺度,它依然成立。动量守恒定律的定义为:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。由此可见,动量定理和动量守恒定律是两个不同的概念,不能混为一谈。

二、外汇原理?

1、外汇交易:外汇交易就是一国货币与另一国货币进行交换。与其他金融市场不同,外汇市场没有具体地点,也没有中央交易所,而是通过银行、企业和个人间的电子网络进行交易。 "外汇交易"是同时买入一对货币组合中的一种货币而卖出另外一种货币。 外汇是以货币对形式交易, 例如欧元/美元(EUR/USD)或美元/日元 (USD/JPY)。

2、外汇交易原理:以一对货币日元兑美元为例,当前1美元可以换得100日元,如果你看空日元,认为日元会下跌,那么你在汇市中首先是借贷100日元,然后在汇市中找到手里有美元而想要换得日元的人与他交换,这样你手里的日元变成了美元,手里拥有了1美元。过了一段时间,日元大跌,这时候1美元可以换得1000日元,你只需要手里的1美分就可以换的100日元,你然后把这1美分换得的日元用来进场时还给借贷人就可以了,而你手里剩余的9美分就是这次的盈利。(当然,还要扣除一些诸如服务费用的东西)

三、角动量原理详解?

又称动量矩定理。 质点系对一点(或一轴)的角动量对时间的导数等于外力系对此点(或此轴)的主矩,广泛用于处理刚体定点(或轴)转动问题。角动量定理的微分形式为dL/dt=M。

角动量定理

又称动量矩定理。 质点系对一点(或一轴)的角动量对时间的导数等于外力系对此点(或此轴)的主矩,广泛用于处理刚体定点(或轴)转动问题。角动量定理的微分形式为dL/dt=M。

角动量定理:

表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。

即 ,式中ri、mi和vi分别为质点系中第i个质点关于O点的矢径、质量和速度矢量。这一定理中的 O点必须固定。在一般情况下,对于动点,这个定理不成立;但质点系的质心例外,关于质心的角动量定理为:质点系对于质心C的角动量为,它对时间的微商等于作用在质点系的外力系对质心C的主矩Mσ,即式中r媴为质点系中第i个质点对质心的矢径。

应用

由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。

动量矩定理可用来解决质点系动力学中与转动有关的问题。一般情况下,对于O点是动点的,这个定理不成立,但O点是质点系的质心时例外。

四、动量定理实验原理?

动量定理是动力学的普遍定理之一,内容为物体动量的增量等于它所受合外力的冲量即Ft=Δvm,或所有外力的冲量的矢量和。如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第二定律和运动学公式推导出来。动量定理不但适用于恒力,也可以随时间而变化的变力,对于变力的情况,动量定理中的F应理解为在作用时间内的平均值。

五、反冲原理动量定理?

1.反冲运动:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂成两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动。这个现象叫做反冲。 反冲运动中,物体受到的反冲作用通常叫做反冲力2.

系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象。喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零。一般为物体分离则有 0=mv+(M-m)v‘ , M是火箭箭体质量,m是燃气改变量。(参考系的选择是箭体)反冲运动和碰撞、爆炸有相似之处,相互作用力常为变力,且作用力大,一般都满足内力>>外力,所以反冲运动可用动量守恒定律来处理。特点:⑴ 反冲运动的问题中,有时遇到的速度是相作用的两物体间的相对速度,这是应将相对速度转化成对地的速度后,在列动量守恒的方程。⑵ 在反冲运动中还常遇到变质量物体的运动,如火箭在运动过程中,随着燃料的消耗火箭本身的质量不断在减小,此时必须取火箭本身和在相互作用时的整个过程来进行研究。例如:火箭、喷气式飞机或水轮机、灌溉喷水器等。

六、李永乐角动量原理?

角动量定理

又称动量矩定理。 质点系对一点(或一轴)的角动量对时间的导数等于外力系对此点(或此轴)的主矩,广泛用于处理刚体定点(或轴)转动问题。角动量定理的微分形式为dL/dt=M。

表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。

七、伯努利方程 动量方程 原理?

一、流体力学之流体动力学三大方程分别指:

1、连续性方程——依据质量守恒定律推导得出;

2、能量方程(又称伯努利方程)——依据能量守恒定律推导得出;

3、动量方程——依据动量守恒定律(牛顿第二定律)推导得出的。 二、适用条件: 流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学纳维-斯托克斯方程基于牛顿第二定律,表示流体运动与作用于流体上的力的相互关系。

纳维-斯托克斯方程是非线性微分方程,其中包含流体的运动速度,压强,密度,粘度,温度等变量,而这些都是空间位置和时间的函数。

一般来说,对于一般的流体运动学问题,需要同时将纳维-斯托克斯方程结合质量守恒、能量守恒,热力学方程以及介质的材料性质,一同求解。

由于其复杂性,通常只有通过给定边界条件下,通过计算机数值计算的方式才可以求解。

八、机床自动量仪原理?

二次元自动测量仪又称光学投影机,是用于二维平面尺寸(圆直径、两平面距、两直线交点座标、直线与圆交点座标、两平面夹角、两直线夹角等)的自动测量工具。

二次元自动测量仪的工作原理:

利用光学原理将工件的轮廓经各种透镜及反射镜投影,并放大成各种倍数后,先投影到半透明的投影幕上,再配合各种标准图片,作非接触式的测量。

九、动量轮方向控制原理?

动量轮系统是各种空间飞行器(如卫星、深空探测器等)进行姿态控制的主要手段,动量轮系统的性能决定了飞行器姿态控制的优劣,直接影响着空间任务完成的质量。

随着空间技术的快速发展,许多空间任务对航天器的姿态机动能力有更高的要求,快速、稳定、高精度的姿态控制系统成为空间技术的重要研究方向。目前三轴姿态控制主要有动量动量轮方案和控制力矩陀螺方案,动量动量轮方案至少需要三套正交组合的动量轮装置且存在系统冗余,需设置备份动量轮保证其可靠性,控制力矩陀螺方案利用其框架结构只对一个高速转子进行控制,但这种框架设计方式会带来较大的摩擦干扰力矩,此外,两种方案的伺服系统大都采用电机驱动,电机的摩擦干扰会影响系统的控制精度,电机较低的带宽也会造成当飞行器受到高频干扰时很难保证其姿态的稳定性。

为了克服现有技术中存在的问题,满足空间飞行器姿态控制的快速、稳定和高精度要求,本发明提出了一种组合驱动多力矩输出动量轮系统,通过电机与压电作动器组合驱动一个动量轮实现三轴力矩输出。其中,电机驱动输出长周期力矩,压电作动器驱动输出短周期、高精度力矩。

十、动量守恒单摆实验原理?

实验目的:利用单摆测定当地重力加速度,巩固和加深对单摆周期公式的理解。实验原理:单摆在摆角很小(小于5º)的情况下,可以看作间谐振动,其固有周期公式,据此,通过实验方法测出摆长l和周期T,即可计算出当地的重力加速度。

实验器材:铁架台(带铁夹)、金属小球、刻度尺、秒表、细线。

实验步骤:

1、 将细线穿过金属小球上的小孔,在细线的一端打一个稍大一点的结,制成一个单摆。

2、 将铁架固定在铁架台上端,铁架台放在桌边,使铁架伸出桌面,然后把单摆固定在铁夹上,使摆球自由下垂。

3、 用刻度尺量出摆长(摆求静止时悬点到摆球球心的距离)。

4、 把摆球从平衡位置拉开一个角度,并使这角度小于5º,然后无初速释放小球。当摆球摆动稳定以后经过最低点时用秒表开始计时,测出单摆30~50次全振动的时间,求出一次振动时间及单摆的周期。

5、 反复测量三次,计算出周期的平均值,然后利用公式计算出重力加速度。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片